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ABSTRACT 

The asymptotic distribution theory of test statistics which are functions of spacings is studied 
here. Distribution theory under appropriate close alternatives is also derived and used to find 
the locally most powerful spacing tests. For the two-sample problem, which is to test if two 
independent samples are from the same population, test statistics which are based on "spacing- 
frequencies" (i.e., the numbers of observations of one sample which fall in between the 
spacings made by the other sample) are utilized. The general asymptotic distribution theory of 
such statistics is studied both under the null hypothesis and under a sequence of close 
alternatives. 

1. INTRODUCTION 

Let X1, ..., Xn- be n - 1 independently and identically distributed continuous 
real-valued random variables with a common distribution function (d.f.) F(.) whose 
support is [0, 1]. If 0 < X'n ' ... Xn-l,n - 1 denote the order statistics, then the 

sample spacings are defined to be 

Dkn = Xkn - Xk-l,n, k = , .. , n, (1.1) 

with the notation Xon = 0 and Xnn = 1. In particular, if F(.) is the uniform 
distribution on [0, 1], we will use the special symbols { Uk, i = 1, ..., n - 1) for the 

sample, 0 = Uon c U,n - * * * Un-l,n - Unn = 1 for the order statistics and 

Tkn = Ukn - Uk-l,n k = 1, ..., n, (1.2) 

for the uniform spacings. 
Tests based on sample spacings are useful in many statistical contexts, e.g., for 

goodness of fit, tests on Poisson processes, monotone failure rate, etc. For an excellent 
review of such problems, refer to Pyke (1965). See also Rao (1976) for applications 
connected with circular data. 

We are interested in the asymptotic distribution theory of spacing statistics of the 
type 

n 

Vn = E hkn(Dkn), (1.3) 
k=l 

* Part of the work of this author was completed while he was at the Mathematics Research Center, 
University of Wisconsin, Madison, under the sponsorship of the U.S. Army under Contract No. DAAG29- 
75-C-0024. 
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where {hkn(), 1 < k < n, n > 1) is a sequence of real-valued Borel-measurable 
functions. The case where hkn( ) = h,(.) for all k, i.e., where one takes a symmetric 
function of (Dkn), has already been considered in the literature. See, for instance, Le 
Cam (1958), Pyke (1965) or Rao and Sethuraman (1975). Pyke (1965) also discusses 
generalizations in several directions. Hoist (1979b) considers functions of higher- 
order spacings from a uniform distribution. But the cases of interest to us here are 
not readily available in the literature. In Section 2 the asymptotic distribution of Vn 
is studied when the spacings are from a fixed alternative d.f. F(.). In Section 3, the 
asymptotic theory of statistics of the type V, is considered for close alternatives to the 
uniform distribution. The problem of finding the asymptotically locally most pow- 
erful spacings test is also discussed. 

Next consider two independent samples of size n - 1 and m respectively from two 
continuous distributions, and the problem of testing that these are identical. By 
applying the usual probability integral transformation on both samples, we can 

suppose that the first sample is from the uniform distribution on [0, 1] and that the 
second comes from the distribution F (say) on [0, 1]. Let Y1, ..., Ym denote the 
(transformed) second sample, and set 

Sk = number of Yj's in [ U-_, U), k = 1, ..., n. (1.4) 

In Section 4 we shall study the asymptotic distribution of test statistics of the form 
n 

Qn= , hk(Sk), (1.5) 
k=- 

for close alternatives F = F, to the uniform distribution. Here m, n - oo such that 

m/n p, < p < oo. (1.6) 

Tests based on such spacing-frequencies {Sk} have been considered for two-sample 
problems, for instance, by Dixon (1940), Godambe (1961), Blumenthal (1963, 1967), 
and Weiss (1976). 

A few words about notation. Many quantities like Ui, Di, as well as the functions 
{hkn(.)}, depend on n. For notational convenience we shall suppress this suffix, 

except where it is essential. Convergence in distribution will be denoted by -. We 
write X - Y to denote that X has the same distribution as Y. We will let Z denote an 
exp(l) random variable (r.v.) with density e-' for z > 0, ij a geometric r.v. with 
P(7 = j) = pl/(l + p)J+l and Poi(X) a Poisson r.v. with mean X. For a r.v. Xn, we 
write Xn = Op(g(n)) if Xn/g(n) + 0 in probability and write X, = Op(g(n)) if for each 

> 0, there is a K, < oo such that P{ I Xn/g(n) I > Kj} < E for n sufficiently large. 

2. ASYMPTOTIC DISTRIBUTION OF Vn UNDER A FIXED ALTERNATIVE 

In this section, we establish the asymptotic normality of V, defined in (1.3), under 
the following conditions. Here, as in the following, let 

5k = ,kn = (k - 0.5)/n. (2.1) 

(C1) The function G = F-1 on [0, 1] has derivative G'(x) = g(x) > 0 for all x and 
g"(x) is continuous on [0, 1]. 

(C2) The function hkn(x) is of the form 

k = 1, ...,n and 0<x < oo, 
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for some function h(x, y) defined on [0, oo) x [0, 1]. For any fixed y, 
ad 2 

h(x, y), hx h and hxx h 
(j)X cx2 

are continuous and bounded by cl(x2 + 1) for some nonnegative constants cl and c2. 

We then have the following basic 

THEOREM 2. 1. As n + oo, under assumptions C I and C2, 
n 

n-/2 {h(nDk, k) - &h(Zg($k), k)} 
k=l 

0 ar(h(Zg(x), x)) dx(Zg(x(Zg()x)))) dx) 2, (2.2) 
.o 0 .~ 0 

where ~k = (k - 0.5)/n and Z is an exp(l) r.v. 

Proof. Without any loss of generality we can and shall assume that 

Sh(Zg(x), y) = O for all 0 < x, y < 1. (2.3) 
Since X ~- G(U'), it is clear that for m c n - 2, 

m m _ k k-1 \ 
n 1/2 E h(nDk, $k) n-1/2 h (n ( T - , (2.4) 

k=l k=l \_ =l j=l / 

where {Tj) are the uniform spacings defined in (1.2). Let Z1, Z2, ... be a sequence 
of independently and identically distributed exp(1) random variables, and define Wk 
= Ei= Zy, k = 1, 2,... , for the partial sums with Wo = 0. Then by a lemma of Holst 
(1979b, p. 1069), 

/1 (((u + O(l n) oo i 

exp(itn-1/2 E h(nDk, k))) = + ( ) xp (Zk )) 

x ( exp( s [th(n[G(Wk/n) - G(Wk -/n)], k) + u(Zk - 1)] (2.5) 

From Lemma 2.4, if m, n + oo in such a way that m/n + y < 1, then 

exp( - , [th(n[G(Wk/n) - G(Wk- /n)], k) + u(Zk - 1)]) 

+ exp( ,i,(4th(Zg(x), x) + uZ) dx). (2.6) 

Now on applying the extended Lebesgue dominated-convergence theorem in (2.5) 
(see e.g., C. R. Rao 1973, p. 136), we have for y < 1, 

' 
( m \\ 

& exp itn-'/2 h(nDk, k) 

+ (2T)-1/2 e-(u/2)(1-y) exp - (t2 Ia(h(Zg(x), x)) dx 
--oo J 0O 
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+ 2ut W6?c(h(Zg(x), x), Z) dx + u2y) du 
00 

exp - - 
Ytla 

h(Zgx), x) dx 
r,,(h(Zgc?)x), x),' (2.7) 

as -y -+ 1. Similarly, E'+, h(nD,k, 4k) can be studied. By arguments similar to those of 
Le Cam (1958, p. 13), we obtain 

exp itn-112~ h(nDk, ~k) 

+ exp 
1 

t2 Y/2(h(Zg(x), x)) dx - 4((h(Zg(X), X), Z) d) (2.8) 
.) 0 ~~~~~~~~0 

which proves the assertion using the continuity theorem on characteristic functions. 
Q.E.D. 

LEMMA 2. 1. Let G satisfy condition Cl, and { Wk) denote partial sums of independently 
and identically distributed exp(1) r.v.'s (Zk}. Then as n -+ o 

n[G(Wk)ln) - G(Wk-iln)] = g(k) Zk + g(Z)Zk Wk- -(k + o,(n12), (2.9) n 

where op(.) is uniform in k. 

Proof. A Taylor expansion gives 

G(Wk/n) = G(k) + (Wkln - 4k)g(k) + 1 (Wi/n - 4k)2g'(Ck) 

+ j (Wkln - 4k)3g" (4k + Ok,,(Wk/n - 4k)), (2.10) 

where 0 < Okn < I. As maXk n-1/2 I Wk- k I = Op(l), the continuity of g" gives 

g"(4k + Okf(Wkln - 4k)) = g"(4) + Op(l), (2.11) 
where op(l) is uniform in k. In a similar way we get 

n[G(Wk/n) - G(Wk I/n)] 

Zk g(4) + n-1Zk(Wk-1 - (k - 1))g'(4k) + op(n 1/2). (2.12) 

Q.E.D. 

Using Taylor expansions as above, we obtain from Lemma 2.1 

LEMMA 2.2. Under assumptions Cl and C2, 

n-112 E h(n[G(Wkln) - G(Wk-l/n)], 4k)= 
k=1 
k-ki 

n- Z{h(Zkg(4), 4) + hx(Zkg(4k), 4k)Zkg'(k)( Wk-1 - + op(). (2.13) 

LEMMA 2.3. Under assumptions Cl1, C2 and (2.3), 
m m 

n-112 h(n[G(Wkln) - G(Wk-i/n)], 4k) = n-112 E h(Zkg(k), 4) + o,(l). (2.14) 
1 1 
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Proof First observe that (2.3) implies 

0= (h(Zg(x), y)) = h(Zg(x, y) ax ax 

= (Zg'(x)hx(Zg(x), y)), (2.15) 

so that the r.v. 

Vk(Zk) = hx(Zk g(Ok), Ck)Zk g'(k) (2.16) 

has vVk(Zk) = 0 and moments of all orders. Also 

&(vk(Zk)[Wk- - (k - 1)]) = &Vk(Zk)&( Wk- - (k - 1)) = 0, 

and therefore, 

n-3 k a Vk(Zk)[Wk -1 - (k - 1)] -3 (Zk) (k - 1) = Op(n ) 
1 1 

The assertion now follows from (2.13). Q.E.D. 

LEMMA 2.4. Under conditions C1, C2 and (2.3), as n + oo, 
m el 

n-/2 
D 

h(n[G(Wk/n) - G(Wk -/n)], $) ., 0, ai4h(Zg(x), x)) dx (2.17) 
1 JO 

Proof By Lemma 2.3, it is sufficient to consider the sum of independent r.v.'s 
m 

n-/2 h (Zk g(~k), Ck). 

Since h(x, y) is bounded by cl(xC2 + 1), it is easy to verify the Liapunov condition, 
which establishes the asymptotic normality. As '(a4h(Zg(x), x)) is continuous in x, 
0 < x < 1, it follows that 

( n-1/2 E h(Zkg(k), k) -) Waf h(Zg(x), x)) dx. Q.E.D. 

For the uniform distribution on [0, 1] we get 

COROLLARY 2.1. As n -+ oo, under condition C2 and (2.3), 
nDrl / Irl/ 12 

n- 1/2 h(nTk, &k) -4> . 0, /Ac(h(Z, y)) dy - ( ,(h(Z, y), Z) dy ) . 
1 . ̂0 \ JO O 

Remark 2.1. The regularity conditions Cl and C2 on G = F-1 and h are somewhat 
stringent and can be relaxed. But the relaxation calls for more complex proofs, as in 
Hoist and Rao (1980), and is not very useful for statistical purposes. 

Remark 2.2. The special case h(x, y) = a(y)x leads to sums of the form 
k=i aknDkn which are linear combinations of order statistics from the distribution 

function F. Necessary and sufficient conditions for the asymptotic normality for the 
particular case of linear combinations of uniform order statistics are given in Hecker 
(1976). See also Weiss (1962). 
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3. CLOSE ALTERNATIVES AND LOCALLY OPTIMAL TESTS 

Let {Dk) be spacings from the distribution 

Fn) = + ( y)=y )/n1/ 0 n< y 1, (3.1) 

where Ln(O) = Ln(l) = 0. As in Rao and Sethuraman (1975), assume that Ln(y) is 

uniformly close to a function L(y) which is twice continuously differentiable with 
derivatives L'(y) = I(y) and L"(y) = l'(y). Under this type of smoothness conditions 

(Dk) can be related to the uniform spacings {Tk) by the relation (cf. (3.8) of Rao 
and Sethuraman 1975) 

nDk = n[Fn'(U) - FI'(U- 1)] = nTk( - l-- ) + o(n /2) (3.2) 

where op(-) is uniform in k. By partial integration it follows from the assumption 
(2.3) that &(Zhx(Z, y)) = c6ov(h(Z, y), Z). By Taylor expansion one gets after some 
calculation: 

LEMMA 3.1. Under condition C2, the difference 
n n 1 

n-/2 s h(nDk, k) - n-1/2 
2 

h(nTk, 5k) + - I(y) UoO(Z, h(Z, y)) dy (3.3) 
1 1 .0 

in probability as n - oo. 

We may combine Corollary 2.1 and the above lemma to formulate the main result 
of this section. 

THEOREM 3.1. If the condition C2 and the assumptions on Ln(x) hold, then under the 
close alternatives in (3.1), 

n D 
rl rl 

n-/2 h(nDk, k) - - (y) oa(Z, h(Z, y)) dy, fa,(h(Z,y)) dy 

- '6od(h(Z, y), Z) d . (3.4) 

To find the asymptotically locally most powerful test against the specific alternative 

(3.1), we need to find the function h(x, y) which maximizes 

^eh = J I(y) Wov(Z, h(Z, y)) dy (3.5) eh (3.5) 
Vf ^AI(h(Z, y)) dy - (fo ov^(h(Z,y), Z) dy)2 

As in Holst (1972), it follows that h(x, y) = I(y).x maximizes eh. The optimal 
spacings test is thus to reject XJo if 

n 

E 1(lk)Dk < c. (3.6) 
k=l 

This statistic is linear in the spacings and hence is a weighted linear combination of 
the order statistics. 

For illustration consider testing the null hypothesis that a random sample (X1, 
. ., Xn-1) is from a logistic distribution with F(t) = 1/(1 + e-t) against translation 

alternatives. After transforming the data to [0, 1] through x = F(t) one finds that 

Vol. 9, No. 1 84 



SPACINGS AND THE TWO-SAMPLE PROBLEM 

L,(x) of (3.1) converges to L(x) with derivative l(x) = 2x - 1, 0 < x < 1. The test 

simplifies to a test based on the sample mean. Analogously, asymptotically optimal 
spacings tests can be derived for various other problems including for close "scale" 
alternatives. 

For the symmetric case, where h(x, y) = h(x), it is seen from Theorem 3.1 that no 
power is obtained for alternatives at a "distance" of n-1/2, i.e., of the type (3.1). Power 
for alternatives at a distance of n-'4 can be obtained through an analysis similar to 
that above. The so called Greenwood statistic D. Di is optimal. See Rao and 
Sethuraman (1975) or Hoist and Rao (1980). 

4. THE TWO-SAMPLE PROBLEM 

In this section the test statistic Qn = E hkn(Sk) is studied under close alternatives. 
First note that given the U-observations the probability of a Y-value falling in the 
interval [UL-1, U') is Tk = U - Uk- if the second sample comes from the same 
distribution as the first. More generally this probability is Dk = F(Uk) - F(Uk-i) 
under the alternative F(.). Thus the conditional distribution 

'((S1, .. ., Sn) I U, . . ., Un-,) = Mult(m, D1, ..., Dn) (4.1) 

is a multinomial distribution under the alternative F(.). Consider a sequence of 
alternatives given by (3.1) and satisfying the conditions of Section 3. We have 

LnT Tj - Ln E T 

Dk = Fn(Uk) - Fn(Uk-1) = Tk + 1/2 (4.2) 

where {Tk) are the uniform spacings as in (1.2). 

THEOREM 4.1. Let m,n + oo in such a way that m/n * p, 0 < p < oo. Let 71 denote a 
geometric random variable with P(r = j) = pi/(l + p)j+l. Under the assumptions on 

Ln(x) in connection with (3.1), 

n-1/2 h( k, Sk) -D (/, a2) (4.3) 
k=l 

where 

I 
1 

=- 1 I f l(u) 0ov0(, h(u, -)) du (4.4) 

and 

a2 = - ah(u, ir)) du - )( J to , h(u, n)) du . (4.5) 

Proof. Using (4.1), it follows from Hoist (1979a) that for any N c n, 

o exp itn-/2 E hk(Sk) D = 27P( Yk = m D 
(ex(itn1 + iu - du, (4.6) 

elr ( N n) 
X w exp itn-1/2 hk(Yk) + iu E (Yk - mDk) D du, (4.6) 

. --w 1 1 
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where, conditional on D = (D, ..., D,), the {Yk}'s are independent with Yk - 

Poi(mDk), and hk(.) = h(5k, .). 
Furthermore, since y(Ey Yk D) = Poi(m) for any D, it follows that 

Yn D =mm 
P Yk = m D) m= me = (2rm)-1/2 exp(o(l)) (4.7) 

i(F / 
m 

?) m \1 

by Stirling's formula. From (4.2) and the assumptions, it can be seen as in Lemma 
3.1 that for any real numbers t and u, 

(ep {i thk(Yk)-O(hk(Yk)l Dk) u(Yk- mDk) ) 
exp 1/2 

+ 1/2 D 
n m 

-+ 1 (4.8) 
ex{i thk(Yk) - o (hk(Yk ) I Tk) u( Y - m Tk) T ) 

&(exp{i (- 1n/2^ + m 1/2 
T 

in probability as m, n + oo. Here the Yk's are independent Poi(m Tk) random variables. 
One can also prove that when n, N + oo in such a way that N/n - y, 0 < y < 1, 

N N 

n-1/2 S (hk(Yk)l Dk) 
- n-1/2 E (hk(Y'k)l Tk) = -A(y) + Op(l) (4.9) 

1 1 

where 
ey 

A(y)= (u) = ) (Z, &(h(u, )| Z)) du (4.10) 
o 

and Z is an exp(l) random variable, Y(r IZ) is Poi(pZ) so that P( = j) = 
pJ/(l + p)j+l. Using conditional expectations, we get 

N N 

{exp(itn -/2 hk(Sk))} = (gt exp(itn 1/2 hk(Sk) D}) - 
1 

=(2r)-1/2exp(o(l)) exp it E (hk(Yk)l Dk) 
?-,rYm 1 

x {exp ( i {tn-1/2[hk(Yk) - 
^(hk(Yk)l Dk)] + um 

- 
k/2(Y- mDk)} D 

x \ exp(ium-1/2 (Yk - mDk) D du. 
N+1 / , (4.10) 

The integrand in (4.10) is dominated by 

f 
( n \ -n 

f,(u) = g & exp ium-l/2 E (Yk- mDk) D} 
N+1 

I - 1/2iU/ J 
=-& exprm I- T -i2L1 Tj (em-2i - 1- m-1/2iu) 

~,() _ L,,n'/2 )n) (U . 1 1 J 

+f(u) = e-(1-)u2/2 
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as v -* oo. Also as v + oo 

rV J/m ero 

(4.12) f^(u) du f(u) du. 
J -TrJm M -00 

Thus by the extended Lebesgue dominated-convergence theorem (see for instance 
C.R. Rao 1973, p. 136), it follows by combining the results above that 

N 

lim (exp(itn -1/2 hk(Sk)) 

- 
_ N N 

exp(itA(y)) lim S exp in- hk(Yk) + ium-1/2 (Y k - mTk) T 
~-o 1 1 

X (2qr)-1/2 exp(ium-1/2 (Y- mTk) T du 
N+I )1 

= exp(itA(y)) lim & exp(itn-12 hk(S) (413) 

where 

Y(S1, ..., Sn I T) = Mult (m; T1, ..., Tn), (4.14) 

with the unconditional distribution 

P(S' =s')= n+ m- 
(4.15) 

From the results of Holst (1979a), the asymptotic behaviour of a random variable of 
the type EN h(Sf) can be deduced. In an analogous way 

N 1 
n- '/ hk(Sk) *,O O, f <A(h(u, T)) du - ,( f , h(u, r)) du) 

Similarly one can study ]'+1 hk(S'). Using an argument of Le Cam (1958, p. 13), we 
obtain 

n-'/2 i hk(Sk) * X -A(1), WaAh(u, r1)) du 

( 
-1 ( v(,!, 

h(u, h)) du) ~^./~l7 )rlO -C ? d))d u )) 

By an elementary calculation, one finds (v(Z, &(h(u, r)Il Z)) = ov(j, h(u, ij))/ 

(p + 1). Q.E.D. 

As in Section 3, h(u, j) = h(u)j gives an asymptotically optimal test statistic. 
These results are proved here under rather restrictive assumptions which can be 

considerably weakened. That, however, makes the proofs technically more involved 
without providing much further insight into the statistical problem. For a proof 
under weaker conditions, see Holst and Rao (1980). Once the optimality of tests 
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linear in {Sk) is established, it is possible to study conditions on {ak) under which 
El akSk is asymptotically normal. For instance, by Theorem 3 of Hoist (1979a), we 
have 

THEOREM 4.2 (Holst). If E ak = 0, E' at/n + 1, and max1l<k< a'/n -+ 0, then 
n(n -1/2 E' akSk) ~+ A(0, 'a(ri')), where i? is a geometric random variable with 

P(O = j) = pi/(l + p) +. 

If h(u,j) = h(j), then the test statistics will be symmetric in the Sk's. From Theorem 
4.1, it is seen that such statistics will give no power against alternatives of the type 
(3.1), which converges to the null at a rate of n 1/2. But by arguments similar to those 
used here, it is possible to establish that such tests have power against alternatives 

converging to the null at a slower rate of n-1/4 and that among such symmetric classes 
of statistics, ' S suggested by Dixon (1940) is asymptotically optimal, irrespective 
of L,(u). See Holst and Rao (1980) for details. It may be remarked here that the "run 
test" is of this symmetric type. 

To illustrate the above results consider the two-sample problem with location 
alternatives, i.e., we have m observations from the distribution function G(x - 
n-l26) and n - 1 observations from G(x) on R1. If G is sufficiently smooth, then it 
follows that 

OG"(G-'(u)) 
l(u) = -Oa(u), (4.18) 

G'(G l(u)) 

say. The asymptotically optimal test statistic is El a(lk)Sk. For example, the logistic 
distribution gives the Wilcoxon-Mann-Whitney test. 

5. SUMMARY 

In this paper the asymptotic theory of spacing statistics of the form Vn = S,=i 

hkn(Dkn) is considered, where {Dkn, I < k < n, n > 1} are the sample spacings from 
any fixed distribution function F(x) on [0, 1], and {hk,n(), 1 < k < n, n > 1} are real 
measurable functions satisfying regularity conditions. Also such statistics are studied 
for "alternatives" close to the uniform on [0, 1], and locally optimal tests derived. 
Next, let U1, ..., U,-_ and V1, ..., Vm be independent random samples from two 
continuous distribution functions. The problem considered is to test the null hypoth- 
esis that these two parent populations are identical. Let U1 ... * < Un-l be the 
ordered U-observations. Denote by Sk the number of V-observations falling in the 
interval [U_-i, Uk). For {hkn(')} given functions, asymptotic theory under the null 
and close alternatives is studied for test statistics of the form En=l hkn(Sk), using the 
results obtained for spacings. 

RESUME 

On etudie la distribution asymptotique des tests bases sur l'espacement des donnees. Une 
theorie est egalement developpee pour la distribution sous des alternatives voisines de 
1'hypothese nulle; cette theorie est utilisee pour trouver, parmi les tests bases sur l'espacement 
des donnees, celui qui est localement le plus puissant. Dans le cas de deux echantillons 
independants, oiu l'hypothese a tester est que les echantillons sont issus d'une meme population, 
le test est base sur la distribution des donnees de l'un des echantillons dans les intervalles entre 
les donnees de l'autre. Une theorie generale de la distribution asymptotique de telles statistiques 
est etudiee sous l'hypothese nulle ainsi que sous une suite d'alternatives voisines. 
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